9-1_采樣一致性過濾點雲
程式說明:
範例程式:
#include <iostream>
#include <pcl/console/parse.h>
#include <pcl/filters/extract_indices.h>
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/sample_consensus/ransac.h>
#include <pcl/sample_consensus/sac_model_plane.h>
#include <pcl/sample_consensus/sac_model_sphere.h>
#include <pcl/visualization/pcl_visualizer.h>
#include <boost/thread/thread.hpp>
boost::shared_ptr<pcl::visualization::PCLVisualizer> simpleVis(pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud)
{
   	// --------------------------------------------
   	// 回傳viewer的指標,表示內部顯示的結果更新
   	// --------------------------------------------
   	boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer(new pcl::visualization::PCLVisualizer("3D Viewer"));
   	viewer->setBackgroundColor(0, 0, 0);
   	viewer->addPointCloud<pcl::PointXYZ>(cloud, "sample cloud");
   	viewer->setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 3, "sample cloud");
   	viewer->initCameraParameters();
   	return (viewer);
}
int main(int argc, char** argv)
{
   	// 點雲的初始化
   	pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
   	pcl::PointCloud<pcl::PointXYZ>::Ptr final(new pcl::PointCloud<pcl::PointXYZ>);
   	// 先產生3000的點為範例
   	cloud->width = 3000;
   	cloud->height = 1;
   	cloud->is_dense = false;
   	cloud->points.resize(cloud->width * cloud->height);
   	for (size_t i = 0; i < cloud->points.size(); ++i)
   	{
      		if (pcl::console::find_argument(argc, argv, "-s") >= 0 || pcl::console::find_argument(argc, argv, "-sf") >= 0)
      		{
         			cloud->points[i].x = 1 * rand() / (RAND_MAX + 1.0); //(隨機數)
         			cloud->points[i].y = 1 * rand() / (RAND_MAX + 1.0); //(隨機數)
         			if (i % 5 == 0)
            				cloud->points[i].z = 1 * rand() / (RAND_MAX + 1.0); 
         			else if (i % 2 == 0)
            				cloud->points[i].z = sqrt(1 - (cloud->points[i].x * cloud->points[i].x)  //x^2 + y^2 + z^2 = 1 (上圓)
                        	- (cloud->points[i].y * cloud->points[i].y));
         			else
            				cloud->points[i].z = -sqrt(1 - (cloud->points[i].x * cloud->points[i].x)  //x^2 + y^2 + z^2 = 1 (下圓)
            				- (cloud->points[i].y * cloud->points[i].y)); 
        	}
      		else
      		{
         			cloud->points[i].x = 1 * rand() / (RAND_MAX + 1.0); //(隨機數)
         			cloud->points[i].y = 1 * rand() / (RAND_MAX + 1.0); //(隨機數)
         			if (i % 2 == 0)
            				cloud->points[i].z = 1 * rand() / (RAND_MAX + 1.0); // 隨機點
         			else
            				cloud->points[i].z = -1 * (cloud->points[i].x + cloud->points[i].y); // x+y+z = 0;
      		}
   	}
   	std::vector
   	// 此部分有平面的model 和球形的model
   	pcl::SampleConsensusModelSphere<pcl::PointXYZ>::Ptr
      		model_s(new pcl::SampleConsensusModelSphere<pcl::PointXYZ>(cloud));
   	pcl::SampleConsensusModelPlane<pcl::PointXYZ>::Ptr
      		model_p(new pcl::SampleConsensusModelPlane<pcl::PointXYZ>(cloud));
   	if (pcl::console::find_argument(argc, argv, "-f") >= 0) //平面
   	{
      		pcl::RandomSampleConsensus<pcl::PointXYZ> ransac(model_p);
      		ransac.setDistanceThreshold(0.01);
      		ransac.computeModel();
      		ransac.getInliers(inliers);
   	}
   	else if (pcl::console::find_argument(argc, argv, "-sf") >= 0) //球形
   	{
      		pcl::RandomSampleConsensus<pcl::PointXYZ> ransac(model_s);
      		ransac.setDistanceThreshold(0.01);
      		ransac.computeModel();
      		ransac.getInliers(inliers);
   	}
   	// 將在inlinear的點雲複製出來
   	pcl::copyPointCloud<pcl::PointXYZ>(*cloud, inliers, *final);
   	// 建立視覺化的物件
   	boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer;
   	if (pcl::console::find_argument(argc, argv, "-f") >= 0 || pcl::console::find_argument(argc, argv, "-sf") >= 0)
      		viewer = simpleVis(final);
   	else
      		viewer = simpleVis(cloud);
   	while (!viewer->wasStopped())
   	{
      		viewer->spinOnce(100);
      		boost::this_thread::sleep(boost::posix_time::microseconds(100000));
   	}
   	return 0;
}